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Abstract We propose a method for explicit computation of the Chern character form of a
holomorphic Hermitian vector bundle (E, #) over a complex manifold X in a local holomor-
phic frame. First, we use the descent equations arising in the double complex of (p, g)-forms
on X and find the explicit degree decomposition of the Chern—Simons form cs; associated to
the Chern character form chy of (E, k). Second, we introduce the so-called ascent equations
that start from the (2k — 1, 0) component of cs, and use the Cholesky decomposition of the
Hermitian metric % to represent the Chern—Simons form, modulo d-exact forms, as a 9-exact
form. This yields a formula for the Bott—Chern form bcy of type (k — 1, k — 1) such that

/1 -
chy = Taabck. Explicit computation is presented for the cases k = 2 and 3.
b4
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1 Introduction

Let V be a C*®°-complex vector bundle with a connection V = d + A over a smooth manifold
X. The Chern character form ch(V, V) for the pair (V, V) is defined by

V-1
ch(V,V) =tr [exp( Vz)] )
2
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Here V2 is the curvature of the connection V, an End V -valued 2-form on X, and tr is the trace
in the endomorphism bundle End V. The Chern character form is closed, d ch(V, V) = 0,
and its cohomology class in H*(X, C) does not depend on the choice of V (see, e.g., [1]).

Let VO and V! be two connections on V. In [2], Chern and Simons introduced secondary
characteristic forms—the Chern—Simons forms cs(V!, V). They are defined modulo exact
forms, satisfy the equation

des(V!', v0) = ch(V, v!) — ch(V, V), 1)

and enjoy a functoriality property under the pullbacks with smooth maps. When the bundle
V is flat, putting V! = d + A and V° = 4 and using a linear homotopy A(7) = tA in the
Chern—Weil homotopy formula, one obtains an explicit formula for the Chern—Simons form
cs(A) in terms of A.

Let (E, h) be a holomorphic Hermitian vector bundle—a holomorphic vector bundle of
rank r over a complex manifold X, dim¢c X = n, with a Hermitian metric 4. The metric A
induces canonical connection d + 6 in E with the curvature form @. In the local holomorphic
frame, § = h~'0h and @ = 96 (see, e.g., [1]). Chern—Weil theory associates to every
polynomial @ on GL(r, C), invariant under conjugation, a differential form @ (@) on X. A
special case of this construction is the Chern character form ch(E, /), defined by

ch(E,h) =tr {exp(g @)] = > ch(E. h).
k=0

Let 41 and A, be two Hermitian metrics on a holomorphic vector bundle £ over a complex
manifold X. In the classical paper [3], Bott and Chern showed the existence of certain
secondary characteristi_c forms, the Bott—Chern secondary forms bc(E, hy, ho). They are
defined modulo 9 and 9-exact forms, satisfy the equation

V=1

2—53 be(E, hy, ha) = ch(E, h1) — ch(E, h))
b4

and enjoy the functoriality property with respect to the pullbacks by holomorphic maps. Here
the Chern character forms are computed for canonical connections in (E, k1) and (E, hy).
The Bott—Chern forms have been used in geometric stability [4,5], in higher dimensional
Arakelov geometry [6,7] and in physics [8] (see also [9] for their application to differential
K -theory).

However, it is difficult to obtain explicit formulas for the Bott—Chern forms. It is already
mentioned in the remark in [3, Sect. 3] that even for a linear homotopy /; of Hermitian
metrics, the homotopy formula in Proposition 3.15 in [3] contains the inverse metrics through
O, = é(ht_lah,) and does not allow to integrate over ¢ in a closed form. As the result, it is
difficult! to get explicit formulas for the Bott—Chern forms in terms of the Hermitian metrics
hy and hy only. This problem manifests itself even for the case when E is a trivial bundle
with metrics 71 = h and hy = I, the identity matrix.

Here we show how using global coordinates on the space of Hermitian positive-definite
matrices associated with the Cholesky decomposition, one can obtain explicit formulas for
the Bott—Chern forms on trivial bundles. Namely, in Proposition 1 we present an explicit
decomposition of the Chern—Simons form cs; associated to the Chern character form ch; =
chy(E, h) into (p, g)-degrees. It is done in Sect. 2 by solving the descent equations from the
double complex of (p, g)-forms on X, applied to chg. In Sect. 3 we introduce the so-called

I As was observed in [4], “One interesting feature is that we have an example of a variational problem with
no simple explicit formula for the Lagrangian”.
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ascent equations to represent the Chern—Simons form, modulo d-exact forms, as a d-exact
form. These equations start from the (2k— 1, 0) component of cs; and produce the Bott—Chern

/1 -
form—a form bcy of degree (k — 1, k — 1) such that chy = Taabck. It is obtained by
T

repeatedly finding corresponding d-antiderivatives and seems to be very non-local. Using the
Cholesky decomposition of the Hermitian metric # we explicitly solve the ascent equations in
cases k = 2 and k = 3, and obtain explicit local formulas for the corresponding Bott—Chern
forms bcy. These formulas are presented, respectively, in Propositions 2 and 3 and constitute
the main result of the paper. We believe that such explicit local formulas for the Bott—Chern
forms exist for all k. In Remark 5 we prove that the form bc; is positive, and in Remark 7 we
directly show that for bundles with upper-triangular transition functions the Euler—Lagrange
functional M¢(—, K) introduced in [4] is bounded below.

2 Double descent
2.1 Set-up

Let 7 be a Hermitian metric in a rank r trivial complex vector bundle over a complex manifold
X (i.e., in general we consider a local holomorphic frame over some open neighborhood).
Put (see, e.g., [1])

0=hr"'9n and © = 36.
We have the following useful formulas
90 =—02, 30 =0 and 9O =[0O,0], IO =0, 2)

where for the matrix-valued differential forms we write A B instead of A A B, etc. In particular,
we have
00F =[O, 0] and 9(0O") = —06%0. 3)

[y

We have, using 1 = ——,
2

K
chi(h) = aCkks

where
_ k
Wk xk =tr@

is a 8 and d-closed real form of type (k, k); here and in what follows wp,q denotes a (p, g)-
form. It follows from the Poincaré lemma that locally (i.e., on some polydisk coordinate chart
of X) there are forms w7 x—;—1 such that

Wk = 0wk k1,

0wk k—1 = 0W)y1,k—2,

0wok—2,1 = dwor—1,0,
dwzk—1,0 = 0.
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226 Geom Dedicata (2016) 181:223-237

These descent equations” can be written succinctly as a single equation
wpk = (0 —10) (wk,k—l itk + o+ oy o + tkilekfl,O) O]
which holds for all # € R.
Remark 1 Putting t = —1 we get
ok =d (wk,k—l — k1 k—2 o+ (D o0 + (—1)k_]0)2k—1,0) )

where d = 9+ 9. This gives an explicit decomposition of the Chern—Simons secondary form
csg into (p, g)-degrees, p + g = 2k — 1:

k
1 _ -
oSk = (wk,kfl — opp1h-2+ o+ (=D Poy o + (=D 1w2k71,0) )
It is easy to compute all these forms using (2)—(3) and equations

392 =0, 30> =1[0O,9]. (6)
First, we observe that
wp -1 = tr(0O* 1)
and state the following result.
Lemma 1 We have
dp k-1 = (0201 = dt1 k-2,

where

Ok41,k—2 = tr {0 (02@’(’2 + 00203 +... + @ 3020 + @kfzoz)} .

1
k+1
Proof Using (2)—(3), we have
tr (o@k—l) —tr (—ozek—l —0 (@k—lo - 0@k—1)) — (9@k—10) — 9’1,

Next, using (2) and (6), we get

éki%‘ (0@i02@k—2—i) _ lf (@i+102@k—2—i) _ lf (0@i (©0 — 00) @k—2—i>
=0 i=0 i=0

_ kiz (@i+102@k—2—i) + 020! —go g,
i=0
since the second sum telescopes. Using the cyclic property of the trace, we obtain the formula
for wg41 k—2-

Observe that wy x—1 is the constant term ag in the polynomial

Fr(t) =tr {0 (e + t02)k_1} =ag+ayt+-+ap_1157", 7

2 Compare with the double descent in [10] and with the holomorphic descent in [8].
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while by Lemma 1,
1
a
k+1

This suggests to consider all coefficients a; of Fy (t)—differential forms of degrees (k+1, k —
[—1),l=0,1,...,k—1.

Wk+1,k—2 = 1.

Lemma 2 Put G (t) = tr(® + t02)k‘ We have
dF(t) — tdF (1) = G ().
Proof 1t follows from Eq. (2) and (6) that
3O +16%) =[(© +16%),0] and 3O +16%) =1[(© +16%),6],
which implies
(O +162)F = [(@ + 10k, o] and (O + 1% =1 [(@ + 10, o] .
Therefore,
V(1) =tr {—02(@ 102k _ g ((@ 1102519 —0(@ + r02)’<—1)}
— {02(@ + t02)k_1}
and
() = tr {@(@ + 1971 — 10 ((@ +10% 19 —9(O + taz)k*)}
—ttr {02(@ + t02)k_1} (@ + 102,
so that (3 — 18) Fi(t) = G (1).
From here it is easy to find all descent forms w4 k—/—1-

Proposition 1 We have
.k

oSk =13 (wk,k—1 — st p2 o+ (D Py + (_l)k_I(UZk—l,O) )
where
k!
g1 1=—q, [=0,1,...,k—1.
Wk+1,k—1—1 (k—i—l)'al
In particular,
kl'(k—1)!
W—1,0 = ¥ tr>=1.

2k —1)!

Proof Using the cyclic property of the trace and the computation in the proof of Lemma 2,
we obtain

dG
d—tk(t) — kit [02(@ + tﬂz)k_l] — kIFL(1),
so that
t 12 tk
Gr(t) = by +k3aoI +k3a1? + - +k8ak,1?,
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where by = tr @F = i k- Now it follows from Lemma 2 that

_ k+1
aazZ(%)aazfl, I=1,... k-1,

and since ag = wy k—1, wWe easily obtain

k+1D)---(k+1)
@qg=—>

I Wk, k—1—1-

Thus for k = 1 we have
w10 =1trf =dlogdeth and wyo = logdeth,
whereas for k = 2
w1 =tr(0O@) and w3 = %tr03.
For k = 3 we have
w3 = tr(0@2), w41 = %tr(03@) and ws0 = % ré’,

and for k = 4 from Proposition 1 we obtain

w43 =tr(00%), wsH = %tr (0°0% +006°0 +00%6%), ws = %trwS@)
and

1
w70 = 5 ro’.

Remark 2 The forms tr 62! .k > 1, where 0 = g’ld g is a Maurer—Cartan form, generate

the cohomology ring H*(GL(00, C), Q) for the stabilized complex general linear group
GL(00, C).

3 Double ascent
3.1 Set-up

From the descent equations it follows that there is a form wyr—7 ¢ such that
W2k—1,0 = dW2k—2,0-
Now going up from the bottom to the top (this explains the terminology), we get
d(wrk—2,1 + dwk—2,0) =0,
so that there is a form wy,—3,1 such that
k2,1 + dwrk—2,0 = dwp—3,1.
Therefore

d(wak—32 + dwap—31) =0
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and there is a form wok—4 2 such that
@k—3.2 + dwok—3.1 = 0wk —4.2.
Repeating this procedure, we finally get a form wy—1 x—1 such that
WOk k1 + D) k-2 = VD1 k1
The ascent equations can be written succinctly as

k!
Ok = dwg—1 k-1 —d (wk,kfz — W1 k-3 + -+ (_1)kw2k72,0) . (8)

Defining CSy as csy modulo exact forms (see [11]), we can rewrite (8) as

k

l
CSy = Hawkfl,kfl-

Therefore,

k

1~
chy = 533wk—1,k—1,

.k
so that wg—1 x—1 is ——7 times the Bott—Chern secondary form bcy (see [3]).
1

Remark 3 As a corollary, we have the following version of local “99 lemma: for each form
w of type (k, k) on a complex manifold X satisfying dw = 0 on every polydisk neighborhood
U C X, there is a form 6y on U such that w|; = 006y.

Solving ‘explicitly’ the ascent equations would give explicit local expressions of the Chern
character forms chy in terms of the corresponding Bott—Chern forms bcy. It is known that
it is not possible to get local formulas in terms of the matrix £ alone. This is because each
step in the ascent procedure uses Poincaré lemma which, in general, contains an integration
through the homotopy formula. However, one can solve the ascent equations explicitly by
using the Cholesky decomposition!

Namely, put

h =b*ab =cb, c¢=b"a,

where the matrix b is upper-triangular with 1’s on the diagonal, and a is diagonal with positive
entries. The matrix elements a; and b;j,i = 1,...,r, j > i, are global coordinates on the
homogeneous space H, = GL(r, C)/U(r) of hermitian positive-definite r x r matrices. We
get

0=h""on=b""ab+b""c och =b""(6; + 62)b, )

where

01 =3bb™" and 6, =c 'dc.
Introducing 6 = 61 + 6>, we obtain

©=030=>b"(30—0,0—-060)b, (10)
where

6, = db b~! and 0y = ¢ 1ac.
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These matrix-valued 1-forms satisfy
361 = 0%, 36, = —63, 30, =07, 36, = —63, (11)
060) = —001 4+ 6161 + 6101, 00, = —360, — 0267 — 6,20,. (12)
Moreover, since 0 is nilpotent (upper-triangular with zeros on the diagonal) and
6, = cfl@]*a +a '9a,

we have important property

w (610]') = (0207) =0 (13)
foralll; +1; > Oandl, orl, > 1. We will also be using
6 =h""9n=b"'6b, (14)
where 8 = 6 + 65, so that
30 = -0 and @ = —30 — 00 — 9. (15)

I claim that it possible to compute explicitly differential forms wor—»—;; as traces of
polynomials of the matrix-valued 1-forms 6, 01,60, 0, and their 8 and 9 differentials. In
particular, one can obtain explicit formulas for the Bott—Chern forms wy—1 x—1 as traces of
polynomials in these variables. Though I do not have a nice general proof of this result, the
explicit computation of these forms for k = 2 and k = 3 is given below.

Remark 4 The Cholesky decomposition is useful since by the holomorphic splitting principle
(see, e.g., [12, Corollary 9.26]), for every holomorphic vector bundle £ — X there exists
a variety Y and a flat morphism p : ¥ — X such that the bundle p*(E) over Y admits
upper-triangular transition functions.

3.2 The case k = 2

Start with the form w3 o = %tr 6°. Using (11), (13) and the Cholesky decomposition we
have

w30 = % tr (65 + 3670 + 30105 + 65) = tr (076> + 0163) = 9 tr(6165),
so that
w20 = tr(6167).
Using (15) we get
wr1 =tr(0O) = —tr((30 + 0(00 + 00)) = dtr(00) + tr(0°0 — 6(00 + 00))
= 9tr(00) — tr(6°0),
and using (12) we obtain
w1 + dwp,0 = I tr(06) + tr(—6%0 + (36162 — 6,65))
= 9tr(00) + tr(—620 — 3616 + 6,00, + (6162 + 6261)0)
= 0tr(06 — (916, — 6261))
+ tr(—626 + 076> + 6,0} + (6162 + 6261)6)
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= 3tr(00 — (162 — 6201)).

Thus o . B B
w11 =tr (00 — (0162 — 6,0)) = tr (26,0, + 6265) , (16)

and we obtain the following result.

Proposition 2 The second Bott—Chern form bey of a trivial Hermitian vector bundle (C", h)
over a complex manifold X in Cholesky coordinates h = b*ab is given by the formula

bcp = tr (2929_1 + 929_2) .

o4
Here 8 = 0bb™", 0, = ¢~ '9c and 6, = ¢ 'dc.
Remark 5 Using that ¢ = b*a, we obtain from (16) that
wi =tr (aflaa Aa '9a + 29 A <p*) ,
where ¢ = a~'/2(b*)~19b*a'/?, so that /=T ;1 > 0.

Remark 6 When

(10 (1 f
a_(Oe") and b_(Ol)’

w0 =0 and o] :tr(aaAéa—I—Ze*oaf/\éf_),

we get

so that
1
2

in agreement with Remark 3.4 in [9].

_ 1 _ _
ddwy,1 — 5(33600,0)2 =00 (e 70f AOS),

Following Remark 4, consider a rank » Hermitian vector bundle (E, &) with the transition
functions taking values in the Borel subgroup B(r) of upper-triangular matrices in GL(r, C).
In terms of a local trivialization of E—an open cover {U,} of X and holomorphic transition
functions gup : Uy N Ug — B(r), a Hermitian metric 2 on E is given by a collection {A4}
of positive-definite Hermitian matrices on Uy, satisfying

/’lﬁ:g;ﬁhagaﬁ on Uy NUg.

Denote by bcy, the second Bott—Chern form on Uy, and write gq5 = aggbapg, Where aqg are
diagonal and byp are unipotent. From Proposition 2 we obtain

bCzlg = bcyy + cep on Uy NUg, 17

where

/1 _
Cap = yp tr {a;ﬂl dagg A ‘a;ﬂlaaaﬁ) + a;ﬂlBaaﬂ A a;laaa + aojlaaa A ‘a;ﬁlaaaﬂ '} ,

and depends only on ag. Since aqg are holomorphic, we have 58caﬂ = 0. In particular, if
transition functions are unipotent, it follows from (17) that local expressions {bcyy } determine
a well-defined (1, 1)-form on X.
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Remark 7 Given two Hermitian metrics &y and A, on a holomorphic vector bundle E, we
define a local Bott—Chern form bcy (A1, h2) by

bea(hy, hy) = bea(hy) — bea(ha),

where bca (h12) are given in Proposition 2 with & = hj ». It follows from (17) that for the
bundle E with upper-triangular transition functions bcy (h1, h2) is a well-defined (1, 1)-form
on X. In particular, for such bundles Proposition 2 provides an explicit formulas for the
functionals M, (—, K) and M¢(—, K) in Donaldson’s paper [4], and from Remark 5 one
gets that Mc(—, K) is bounded below [4, Corollary 9]. The latter functional corresponds to
the case when X = C, and algebraic curve, an in our notations is given by

Mc(h17h2)=/Zﬁbcz(hl,hz)+47T\/—1/L(f5’)b01(h1,h2)w-
c

Here w is a Kéhler form on C, vol(C) = 1, and k1, h; are Hermitian metrics in the holomor-
phic vector bundle & over C with the slope u(&).

Remark 8 Upper triangular matrices were used to study the higher Reidemeister torsion in

[13]. Though the set-up in this paper and in [13] is different, it would be interesting to compare
the corresponding calculations.

3.3 Thecasek =3
Using (13) we get
1 1
=— 8 =—1ub
e T 10
1
=t (676> + 6763 + 676,010, + 010,0,63 + 0765 + 6,67)
_ 1 3 3, 1 2
= 28tr 0702 + 6165 + 2(9192) s
so that
_1 3 3,1 2
®4.0 = 7 tr {6762 + 60165 + 2(9192) .
We will compute w4 1 + 5a)4,0 and find w31 such that
w1 + dwa o = dws 1.
First using (15) we get
1 3 1 3.5 = -
w31 = 3 0(0°0) = — (0 (36 + 06 +06))
1 spv b az a3 o
= 58 tr(0°0) + 5 tr(0°60 — 6° (00 + 00))
Lo 6°0) L 046)
= — T — —1r .
2 2

Next, using (12) we obtain

_ 1 _ _
dwsg = S r (11061 + 136,)

@ Springer



Geom Dedicata (2016) 181:223-237 233

1 . o _ o
= 3 tr (11(—391 + 0161 4 61601) + [, (=06, — 6,6, — 9202))
1 _ _o 1 _ _
= jou (1161 + 16,) + S (=011 + 161 + 611101 — (L2 + L6 + 6,12)0)
where
I1 = 60} 4 670, + 0207 — 610201 + 62016, + 05 = 6° — 00,0, — 6,0,0
and

L =— (0 + 010,01 + 6103 — 02010, + 030, +63) = —6° + 0010, + 020,6.
Using identities

al; — 116; — 011y = —0* and 9L, + Lo, 4 611, = —6%,

we get
- 1 — - _
w41 + 0wy = 53 tr (939 + 16 + 1292) s
so that
1 3= _ _
w31 = Etr (9 0+ L6 + 1292) .
Equivalently,

1 _ _ _
31 =S (2601 — (6163 + 201020 + 0301)01 + (076 + 262010 + 0:67)6,) .

Finally, we will compute @3 2 + dw3 1 and find w; » such that
w32+ 0w3,1 = dwap.
First, using (15) we obtain
Iwr(008) = tr (—02@(5 — 908 —00)8 + 00O + 00 + 60))
— (092 + 02@6) :
and
Itr(0O8) = tr (—(@ 100+00)00 — 600 —00)0 + 6902)
-t (0@2 n 5902) :
so that
w32 =tr(0O%) =0 [%tr(b’@é - 6@0)] - %tr(ﬂz@ﬂ_ +6006?).
Next, we write
w31 = %tr (030_ + 1,60, + 120_2) = wéli + a)ﬁ
where 61 =b"16;b and 52 = b~ 16,b and
I, =60>—00,0, —0,0,0, I,=—0°+00,0,+6,0,0,
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where @; = b~10,b and 0, = b—'6,b. We have

_ 1- -
o} = S0 ®’)

% (0620 — 0000 + 000 + 630"
- % (@O0 + 6200 — 0000 + 6°0"),
so that
w32+ 0] =0 [%tr(O@b_’ - 5@0)] + %tr(030_2 — 0000).
We also have
tr(00) = 21r ((—026 - aaé)oo')
— 2 ((—025 +60 + 000 + 060)05)
—o (0@06 +06609)
so that
tr(000©) = 9 [%tr(00_)2] —tr (0%066).
Thus we obtain
w32 + 30 =9 [%tr (o@é — 600 — %(00‘)2)] + %tr (0°6° + 6°006) .

Note that this formula is written in terms of the matrix 4 only. Using Cholesky decompo-
sition, we have

w32+ 30| =8 [%tr (0@6 —- 006 — %(06)2)] - %tr (0707 +6%660)
and it remains to compute
do) = S0t (1 + 1) = Sir (1dy + 1)
= 3t (01 + 300 — 107 + 1.03)
By a straightforward computation using
30 = —30 + 6,01 + 6,0, — 020, — 6,0,
we get
36 =t {[5992 — 0300 + 6236 — 300261 + 0(36201 — 6230))
— (56,67 — 6,362)6 — 919259]51}
_ {[ — 900> + 0906 — 0700 + 396,0, + 0(6290, — 06261)

4 (00165 — 6,002)0 + 0,6,00 ]9}]
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+r {[(elél + 0101 — 00, — 0,00)02 — 00101 + 6101 — 620, — G20,)0
+0%(0101 + 0101 — 020, — 0202) — (0101 + 0161 — 0202 — 02602)6,6,
—0((6202 + 0202)01 + 62(6161 + 6161)) — (6161 + 6101)02 + 01 (620 + 626,))0
— 01620101 + 610 — 620, — 6’_292)]9_1}
and
I, = tr {[ — 3662 + 0300 — 0730 + 300,60, — 0(30,0, — 0,362)
+ @0261 — 62301)6 + 62016 |6 |
_ {[aé92 — 0900 + 0208 — 30616, — 00,38, — 96,02)
— (30261 — 0200,)0 — 020,00 ]9'2}
+ tr {[ — (6101 + 0101 — 0205 — 6:0))0% + (0101 + 6161 — 620, — 6:0,)0
— 020101 + 0101 — 020, — 0202) + (0101 + 0101 — 020, — 0202)016,
—0(01(6202 + 6262) + (0161 + 0161)62) — (02(0101 + 6161) + (6202 + 6262)61)0
+ 0201 (6101 + 6161 — 020, — 9'292)]9‘2].
Thus we obtain
(@110, + dh62) = Jy + Ja,
where
Ji=tr { — 30207 + 03 + 010)0) + (02 + 02 + 0162)9610, — (0 + 63 + 6201)9620,
+ 060167 + 63 + 6260101 + 361 (6261 — 6162)61 — (6261 — 6162)06,6,
+ 302(6201 — 6162)02 — (6201 — 0162)3620, + 623010201 + 6230,6:6,
— 01301016, — 010602010, + 01361020, + 6,36,0,6,

— 01002020, — 02002610, — 0,00:,0,0, + 9239'1929'2]
and
J=tr { [(919_1 + 6161 — 6200 — :62)6% — 06161 + 6161 — 0262 — 6262)0
+0%(0101 + 0101 — 020, — 0200)] (61 — 62) — (0161 + 6161 — 020, — 6,60,) (62016,
— 016262) — 0162(616) + 0161 — 62605 — 6262)01 + 6261 (0161 + 6161 — 6262 — 6262)6;
— 0((0202 + 0202)61 + 62(6101 + 6161))01 — 6(01(6202 + 62602) + (6101 + 6161)62)02
— (01(6202460202)+ (0101 46101)62)001 — (620 + 6262)01 + 626161 + 9_191)09_2}.
Simplifying and using the cyclic property of the trace, we get
h:Uk%+%+&®m@%%ﬁ%+%+%&w@@%%%&—&%Mﬁ+%)
+ (02001020 + 620160,00,) — (010016102 + 01010136) + (02001010 + 626016106)
— (02002018 + 620,01002) + 6290,0,, — 91352919‘2}
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= a{ tr ((012 + 603 4 0162)010; — (6} + 63 + 6201)0201 — (6201 — 0162) (6} + 63)
— 0201020, + 0101610, — 02010101 + 02020102 + 5 ((01602)* — (929‘1>2>)]
+ tr {— (070> + 0103)010, — (0301 + 6,01)020, — (070> + 01603 + 6306,
+ 92912)(9_12 + 9_22) — 9229_1929_2 — 9229_2929_1 — 9129_1919_2 — 9129_291 0
— 9229_1919_1 +9129_1929_1 +9229_2919_2—9129_2929_2 — (9129_291 0y — 9229_1929_1} =Ji + Ji2,
where
_ 2 2 0.0 2 2 NN N2 N2
i =01 (67 + 63 + 01600102 — 67 + 63 + 62000201 — @261 — 6162 07 + )

— 6201020, + 6101610, — 02010101 + 0202010, + 5 ((0162)* — (9291)2))]

and

Jiz = tr {=(070:+6103)010, — (0301 +6,01)0:0, — (60, + 6105 + 03601 + 6,00)(0F + 62)
— 9229_] 020y — 9229_2929_1 — 09129_19]9_2 — 9129_2919_] — 9229_]919_] + 9129_] 6,0,
+ 9229_2919_2 — 9]29_2929_2 — 9129_2919_2 — 022(9_1929_1} ,

and
Ty = tw{(6° (01 — 02) (0161 — 020) + 61071 — 02)01 — 0267 (01 — 02)6
— 0(6101 — 620)6(0) — 62) — 01081 — 62)001 + 62001 — 62)06,
+ 020161 — 00) (01 — 02) + 60161 — 6200)(01 — 62) — 620101616,
— 01626107 4 6260101620 + 62620160102 + 0162620101 + 67620,0,
— 01620,0,0, — 9291929_22 — 01602(010) — 0202)0) — 0102(6161 — 020,)0,
+ 0201(6161 — 6262)07 + 62601(010) — 6202)0, — 06,00,0, — 26,010,060,
— 00,007 — 00,0020, — 0010205 — 201020200, — 02001610, — 0,00,6,6,
— 0102007 —0100,020, — 0:0,005 — 6,100,050, } .

Simplifying Ji; + J» once again and after using numerous ‘miraculous cancellations’, we
obtain

Jio+ b+t (=167 + 163) = —tr (0°6% + 62069) ,
so that finally
w32+ s,y =0 Btr(ﬂ@o' — 606 — %(95)2 + (0} + 02 + 0160)0102
— (6 + 603 + 6200020, — (62601 — 0102) (07 + 03) — 6201620,
+ 616016162 — 62016161 + 620,616, + %((91 02)* — (920_1)2))] .

Thus we obtain the following result.
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Proposition 3 The third Bott—Chern form bes of a trivial Hermitian vector bundle (C”, h)
over a complex manifold X in Cholesky coordinates h = b*ab is given by the formula

1 n n 1 N2 2 2 AN
bC3 = —m tr (0(”)0 — 000 — 5(99) + (01 + 92 + 9102)9]92
— (0] + 67 + 0:200)0:01 — (6261 — 6162) (67 + 63) — 0261626,

- o I _
+ 61010102 — 02010101 + 620,010, + 5((9192)2 - (9291)2)) .
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